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Abstract—Treatment of indoles with 2,5,8-quinolinetriones in the presence of a catalytic amount of hydrochloric acid afforded
heptacyclic reaction products arising from a cascade of two regioselective Michael addition—Diels—Alder cycloaddition steps. In
another approach to polyheterocyclic quinone systems, double Diels—Alder reactions between indolylquinolinetriones and 2,5- or
2,6-dihalogenated benzoquinones provided regioisomeric 11-cycle products in good yields. © 2001 Elsevier Science Ltd. All rights

reserved.

Heterocyclic quinones! are a very important class of
compounds from a biological point of view, particularly
as antitumour agents.” On the other hand, while many
polycyclic aromatic quinones are known, some of them
with interesting properties,® their heterocyclic counter-
parts have received very little attention. We describe
here our findings on the preparation of polyheterocyclic
quinone systems by means of two different types of
three-component reactions that involve the use of 3-
indolyl-2,5,8-quinolinetriones as Diels—Alder dienes.
Although the use of 2- and 3-vinylindoles as dienes in
Diels-Alder reactions is well known,* indolylquinones
are virtually unexplored in this regard;® furthermore,
only symmetrical quinones (benzoquinone and naph-
thoquinone) have been studied as dienophiles, and thus
no issues of regioselectivity have arisen in the past.
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In our first series of experiments, we discovered that a
simple 1-h reflux of indoles 1 with two equivalents of
quinones 2 in ethanol containing a trace of HCI led to
the heptacyclic derivatives 4 in a single synthetic opera-
tion. The formation of 4 can be rationalized in terms of
a cascade process initiated by the Michael addition of
indoles 1 onto 2 to give the corresponding 6-(3-indolyl-
methyl) hydroquinones, which are oxidized in situ to
the corresponding quinones 3.° Diels-Alder reaction of
the latter compounds with a second molecule of 2
followed by a new oxidation’ yields compounds 4*
(Scheme 1). It is noteworthy that the Michael and the
Diels—Alder reactions were both completely regioselec-
tive. This regiocontrol can be assumed to arise from
electron donation of N-1 to the C-5 carbonyl, which
renders its conjugate C-7 position less electrophilic than
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C-6,° directing both the initial Michael reaction and the
subsequent cycloaddition of compounds 3. To check
this assumption, we performed the reaction at room
temperature to isolate intermediates 3,° in order to
establish their structure unambiguously. The long-range
couplings of quaternary carbon atoms 4a and 8a are
very useful for differentiating between 6- and 7-substi-
tuted carbostiryl derivatives because of their very differ-
ent chemical shifts. In the case of compound 3a, these
signals appear at 117.7 and 145.5 ppm, respectively, as
expected from literature data (typical values are ca. 115
ppm for C-4a and ca. 140-145 ppm for C-8a),'° and as
confirmed by two-dimensional experiments. In the
HMBC experiment, the signal due to H-7 shows a
correlation with the one assigned to C-8a, but not with
the C-4a signal, proving the existence of a three-bond
relationship between C-8a and H-7, which is compat-
ible with structure 3a but not with the other possible
regioisomer.

In a second approach to polyheterocyclic quinone sys-
tems, we examined the double Diels—-Alder reactions of
isolated indolylquinone 3a with dihalogenated benzo-
quinones. In our first experiment, treatment of 3a with
2,6-dibromobenzoquinone!! in  refluxing 1,2-
dichloroethane gave hydroquinone 5,'> which precipi-
tated from the reaction medium, thus preventing its
oxidation and a further cycloaddition. This reaction
required the use of two equivalents of 2,6-dibromoben-
zoquinone, which is unstable under the reaction condi-
tions as shown in a blank run of the experiment. Use of
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a larger excess of the quinone allowed to isolate com-
pound 6,'* from a double cycloaddition. Application of
the same conditions to commercially available 2,5-
dichlorobenzoquinone gave the regioisomeric com-
pound 7'* (Scheme 2). To our knowledge, these are the
first double Diels—Alder reactions of an indolylquinone.

The fact that compound 6 has an axis of symmetry
while compound 7 has a center of symmetry should
allow to differentiate these regioisomeric compounds.
Indeed, the '"H NMR spectrum of compound 6 showed
two broad singlets centered at 10.91 and 9.82 ppm, due
to two non-equivalent hydroxyl groups, while in the
case of compound 7 only one signal was observed at
9.87 ppm. The regiochemistry observed for the hetero
Diels—Alder reactions is the one expected for halo-
genated quinones, since the literature contains many
examples that prove that in these compounds the nucleo-
philic end of the diene attacks the unhalogenated car-
bon of the dienophile."

The formation of 5 and 6 can be rationalized by the
mechanism proposed in Scheme 3. Formation of com-
pound 5 can be easily explained through a double bond
isomerization leading to aromatization of the indole
ring and a tautomeric equilibrium starting from the
primary adduct from the first Diels—Alder reaction (8).
Under the conditions of our first experiment, com-
pound 5 precipitated and further reactions were thus
prevented. However, in the presence of a large excess of
2,6-dibromobenzoquinone, 5 is oxidized to 9 while still

(2 eq.
quinone) HsC
>

>
(10 eq.
quinone)

6 (60 %)



P. Lopez-Alvarado et al. / Tetrahedron Letters 42 (2001) 7971-7974 7973

Scheme 3.

in solution,'¢ allowing the second cycloaddition to take
place to give adduct 10, which is transformed into the
observed product 6 through a new isomerization-tauto-
merism process.

In summary, we have shown that large polyheterocyclic
quinone systems can be rapidly and efficiently con-
structed by recourse to the Diels—Alder chemistry of
indolylquinones.
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The electrospray MS spectrum of a DMSO solution of
compound 5 kept at room temperature for a few days
showed peaks due to the M+1 ions of both 5 (m/z 503
and 505) and 9 (m/z 501 and 503), proving the ease of
oxidation of 5.



