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Abstract—Treatment of indoles with 2,5,8-quinolinetriones in the presence of a catalytic amount of hydrochloric acid afforded
heptacyclic reaction products arising from a cascade of two regioselective Michael addition–Diels–Alder cycloaddition steps. In
another approach to polyheterocyclic quinone systems, double Diels–Alder reactions between indolylquinolinetriones and 2,5- or
2,6-dihalogenated benzoquinones provided regioisomeric 11-cycle products in good yields. © 2001 Elsevier Science Ltd. All rights
reserved.

Heterocyclic quinones1 are a very important class of
compounds from a biological point of view, particularly
as antitumour agents.2 On the other hand, while many
polycyclic aromatic quinones are known, some of them
with interesting properties,3 their heterocyclic counter-
parts have received very little attention. We describe
here our findings on the preparation of polyheterocyclic
quinone systems by means of two different types of
three-component reactions that involve the use of 3-
indolyl-2,5,8-quinolinetriones as Diels–Alder dienes.
Although the use of 2- and 3-vinylindoles as dienes in
Diels–Alder reactions is well known,4 indolylquinones
are virtually unexplored in this regard;5 furthermore,
only symmetrical quinones (benzoquinone and naph-
thoquinone) have been studied as dienophiles, and thus
no issues of regioselectivity have arisen in the past.

In our first series of experiments, we discovered that a
simple 1-h reflux of indoles 1 with two equivalents of
quinones 2 in ethanol containing a trace of HCl led to
the heptacyclic derivatives 4 in a single synthetic opera-
tion. The formation of 4 can be rationalized in terms of
a cascade process initiated by the Michael addition of
indoles 1 onto 2 to give the corresponding 6-(3-indolyl-
methyl) hydroquinones, which are oxidized in situ to
the corresponding quinones 3.6 Diels–Alder reaction of
the latter compounds with a second molecule of 2
followed by a new oxidation7 yields compounds 48

(Scheme 1). It is noteworthy that the Michael and the
Diels–Alder reactions were both completely regioselec-
tive. This regiocontrol can be assumed to arise from
electron donation of N-1 to the C-5 carbonyl, which
renders its conjugate C-7 position less electrophilic than

Scheme 1.
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C-6,9 directing both the initial Michael reaction and the
subsequent cycloaddition of compounds 3. To check
this assumption, we performed the reaction at room
temperature to isolate intermediates 3,6 in order to
establish their structure unambiguously. The long-range
couplings of quaternary carbon atoms 4a and 8a are
very useful for differentiating between 6- and 7-substi-
tuted carbostiryl derivatives because of their very differ-
ent chemical shifts. In the case of compound 3a, these
signals appear at 117.7 and 145.5 ppm, respectively, as
expected from literature data (typical values are ca. 115
ppm for C-4a and ca. 140–145 ppm for C-8a),10 and as
confirmed by two-dimensional experiments. In the
HMBC experiment, the signal due to H-7 shows a
correlation with the one assigned to C-8a, but not with
the C-4a signal, proving the existence of a three-bond
relationship between C-8a and H-7, which is compat-
ible with structure 3a but not with the other possible
regioisomer.

In a second approach to polyheterocyclic quinone sys-
tems, we examined the double Diels–Alder reactions of
isolated indolylquinone 3a with dihalogenated benzo-
quinones. In our first experiment, treatment of 3a with
2,6-dibromobenzoquinone11 in refluxing 1,2-
dichloroethane gave hydroquinone 5,12 which precipi-
tated from the reaction medium, thus preventing its
oxidation and a further cycloaddition. This reaction
required the use of two equivalents of 2,6-dibromoben-
zoquinone, which is unstable under the reaction condi-
tions as shown in a blank run of the experiment. Use of

a larger excess of the quinone allowed to isolate com-
pound 6,13 from a double cycloaddition. Application of
the same conditions to commercially available 2,5-
dichlorobenzoquinone gave the regioisomeric com-
pound 714 (Scheme 2). To our knowledge, these are the
first double Diels–Alder reactions of an indolylquinone.

The fact that compound 6 has an axis of symmetry
while compound 7 has a center of symmetry should
allow to differentiate these regioisomeric compounds.
Indeed, the 1H NMR spectrum of compound 6 showed
two broad singlets centered at 10.91 and 9.82 ppm, due
to two non-equivalent hydroxyl groups, while in the
case of compound 7 only one signal was observed at
9.87 ppm. The regiochemistry observed for the hetero
Diels–Alder reactions is the one expected for halo-
genated quinones, since the literature contains many
examples that prove that in these compounds the nucleo-
philic end of the diene attacks the unhalogenated car-
bon of the dienophile.15

The formation of 5 and 6 can be rationalized by the
mechanism proposed in Scheme 3. Formation of com-
pound 5 can be easily explained through a double bond
isomerization leading to aromatization of the indole
ring and a tautomeric equilibrium starting from the
primary adduct from the first Diels–Alder reaction (8).
Under the conditions of our first experiment, com-
pound 5 precipitated and further reactions were thus
prevented. However, in the presence of a large excess of
2,6-dibromobenzoquinone, 5 is oxidized to 9 while still

Scheme 2.
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Scheme 3.

in solution,16 allowing the second cycloaddition to take
place to give adduct 10, which is transformed into the
observed product 6 through a new isomerization-tauto-
merism process.

In summary, we have shown that large polyheterocyclic
quinone systems can be rapidly and efficiently con-
structed by recourse to the Diels–Alder chemistry of
indolylquinones.
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